

Муниципальное автономное учреждение дополнительного образования «РЯЗАНСКИЙ ГОРОДСКОЙ ДВОРЕЦ ДЕТСКОГО ТВОРЧЕСТВА»

Принята на заседании Педагогического совета Протокол от 05.09.2024г. № 3

УТВЕРЖДАЮ: Директор МАУДО «РГДДТ» _____ Т.Е.Пыжонкова Приказ от 05.09.2024г. № 229/1-Д

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

Сертификат: 685153161ED04AD3A7C387FFD703F757
Владелец: МУНИЦИТАЛЬНОЕ АВТОНОМНОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО
ОБЕРАЗОВАНИЯ "РЯЗАНСКИЙ ГОРОДСКОЙ ДВОРЕЦ ДЕТСКОГО ТВОРЧЕСТВА"
Вийствитирия с 27 00 2023 по 20 12 2024

Дополнительная общеобразовательная общеразвивающая программа «РОБОтория»

Направленность: техническая Уровень: ознакомительный

Возраст обучающихся: 10-12 лет Срок реализации: 1 год (36 недель) 72 часа

г. Рязань, 2024 г.

Пояснительная записка

Дополнительная общеобразовательная программа «РОБОтория» (далее Программа) является общеразвивающей, имеет *техническую направленность*, так как ориентирована на развитие интереса детей к инженерно-техническим и информационным технологиям, научно-исследовательской и конструкторской деятельности.

В программе учтены идеи и положения Концепции развития дополнительного образования детей до 2030 года, Программы развития и формирования универсальных учебных действий (УУД), которые обеспечивают формирование российской гражданской идентичности, овладение ключевыми компетенциями, составляющими основу для саморазвития и непрерывного образования, целостность общекультурного, личностного и познавательного развития обучающихся, коммуникативных качеств личности. Программа составлена в соответствии с уставом и локальными актами МАУДО «РГДДТ».

Роль и место программы в Образовательной программе МАУДО «РГДДТ»:

Дополнительная общеобразовательная общеразвивающая программа «РОБОтория» является составным компонентом программно-методического обеспечения Образовательной программы МАУДО «РГДДТ» (далее Дворец). В соответствии с основными положениями Образовательной программы Дворца данная программа способствует обеспечению реализации основных принципов дополнительного образования детей: гуманизации, информатизации, интеграции, вариативности, дифференциации, непрерывности и преемственности. Значимость программы проявляется в выявлении и поддержке талантливых детей, создания возможности для их самореализации. Реализация дополнительной общеобразовательной программы осуществляется в соответствии с нормативными актами Дворца.

Адресат программы

Дополнительная общеобразовательная общеразвивающая программа «РОБОтория» адресована детям 10-12 лет. Предварительная подготовка учащихся не требуется.

Условия набора: набор в группы ведется на свободной основе. Учитывается возраст и желание учащегося. Входной контроль не предусмотрен.

Условия формирования групп: Содержание программы ориентировано на одновозрастные группы. Рекомендованное количество учащихся в группе 12 до 15 человек.

Отличительная особенность программы: Программа одноуровневая. Освоение программы предполагает постепенное расширение и углубление знаний, совершенствование технических умений и навыков по пути от простых моделей к сложным. Работа по программе подразумевает как совместное коллективное сотворчество, так и самостоятельную творческую работу, обеспечивающую в целом практическую реализацию.

Особенности организации образовательного процесса

Программа реализуется через комплекс взаимосвязанных форм организации учебной

способностей учащихся. Работа по программе построена на принципе преобладания практики над теорией. Обучение проходит в гибком формате, сочетающем практические задания, творческие лаборатории и проектную деятельность — от индивидуальных работ (создание собственных роботов) до групповых проектов (сложные модели с несколькими моторами). Интерактивный подход включает обучение через действие, соревновательные элементы (выставки) и постепенное усложнение задач — от сборки по схеме до самостоятельного проектирования механизмов.

Уровень - ознакомительный.

Объем и срок освоения:

Программа рассчитана на 1 год (36 недель) обучения. Занятия проводятся 1 раз в неделю по 2 академических часа. Общее количество учебных часов за период обучения -72 часа.

Форма обучения: очная; программа предполагает использование в образовательном процессе дистанционной формы работы, элементов электронного обучения.

Форма организации занятий

Программа использует различные формы организации учебного процесса в зависимости от типа и содержания занятий:

- 1. Обучающие игры и лекция-диалог применяются на вводных занятиях для знакомства с основами робототехники в интерактивной форме.
- 2. Беседа с практической работой (основная форма) используется при изучении новых тем:
- Знакомство с датчиками и механизмами
- Освоение различных типов передач
- Программирование базовых алгоритмов
- 3. Практическая работа (индивидуальная/парная) для:
- Сборки моделей по схемам
- Отладки программ
- Тестирования механизмов
- 4. Творческая лаборатория применяется для:
- Разработки собственных проектов
- Создания тематических моделей
- Реализации групповых проектов

Программа сочетает индивидуальную работу (при сборке базовых моделей) с групповой деятельностью (в творческих лабораториях и проектах). Коллективные формы используются при обсуждении результатов, проведении выставок.

Формы подведения итогов реализации программы:

Тестирования, презентации проектов, выставки.

Цель, задачи и планируемые результаты

Цель программы: формирование у обучающихся инженерно-технических компетенций через освоение основ робототехники на платформе Lego WeDo 2.0, развитие алгоритмического мышления и творческого проектирования в процессе практической деятельности.

Залачи

Обучающие:

- Познакомить учащихся с основами робототехники, механическими передачами и принципами работы датчиков и моторов Lego WeDo 2.0.
- Сформировать представления о приемах сборки робототехнических средств, правилах безопасной работы при конструировании.
- Научить собирать и программировать роботов по схемам и собственным проектам в среде Lego WeDo 2.0.
- Развивать умение работать с компьютерными программами и дополнительными источниками информации.

Развивающие:

- Развивать логическое и алгоритмическое мышление через решение технических задач.
- Стимулировать творческие способности и пространственное воображение при проектировании моделей.
- Научить планировать определять последовательность промежуточных целей с учетом конечного результата, разбивать задачи на подзадачи, разрабатывать последовательность и структуру действий, необходимых для достижения цели.
- Формировать коммуникативные навыки и умение работать в команде над совместными проектами.

Воспитательные:

- Воспитывать интерес к техническому творчеству и инновационным технологиям.
- Формировать ответственность, упорство и самостоятельность в работе.
- Прививать уважение к труду и культуру взаимопомощи в коллективной деятельности.

Предполагаемые результаты освоения программы:

Личностные:

- Воспитание интереса к техническому творчеству и инновационным технологиям.
- Формирование ответственности, упорства и самостоятельности в работе.
- Формирование уважения к труду и культуры взаимопомощи в коллективной деятельности.

Метапредметные:

- Развитие логического и алгоритмического мышления через решение технических задач.
- Развитие творческих способностей и пространственного воображения при проектировании моделей.
- Умение планировать определять последовательность промежуточных целей с учетом конечного результата, разбивать задачи на подзадачи, разрабатывать последовательность и

структуру действий, необходимых для достижения цели.

 Формирование коммуникативных навыков и умения работать в команде над совместными проектами.

Предметные:

- Ознакомление с основами робототехники, механическими передачами и принципами работы датчиков и моторов Lego WeDo 2.0.
- Иметь представление о приемах сборки робототехнических средств, правилах безопасной работы при конструировании.
- Умение собирать и программировать роботов по схемам и собственным проектам в среде Lego WeDo 2.0.
- Умение работать с компьютерными программами и дополнительными источниками информации.

Воспитательная работа

Воспитательная составляющая дополнительной общеобразовательной программы технической направленности состоит в формировании мотивации поиска новых технических решений, необходимых для развития науки и производства.

Цель воспитательной работы:

Формирование у обучающихся осознанного интереса к инженерно-технической деятельности, социально значимых личностных качеств, ценностных ориентаций и ответственного отношения к техническому творчеству через проектную деятельность в сфере робототехники.

Воспитательные задачи программы с учётом её направленности:

- Воспитывать трудолюбие и ответственность через регулярную практическую работу над проектами.
- Развивать умение работать в команде (взаимопомощь, распределение ролей, уважение к идеям других).
 - Формировать настойчивость при решении технических задач.
- Прививать интерес к инженерно-техническим профессиям и осознание ценности научного прогресса.
- Воспитывать культуру презентации и защиты своих идей (уверенность, аргументированность).

Ожидаемые результаты:

- Учащиеся демонстрируют ответственное отношение к выполнению проектов (соблюдение сроков, качество работы).
 - Активно взаимодействуют в команде, проявляют уважение к мнению других.
 - Стремятся доводить начатое до конца, даже при возникновении трудностей.
 - Проявляют осознанный интерес к техническим дисциплинам и инновациям.
 - Умеют грамотно презентовать свои работы, отвечать на вопросы.
- Программа не только учит робототехнике, но и мягко формирует характер, социальные навыки и профессиональные ориентиры, используя специфику технического творчества.

Формы проведения воспитательных мероприятий:

Групповые проекты — развитие командных навыков.

Итоговые выставки и защиты проектов — воспитание уверенности и культуры публичных выступлений.

Рефлексивные обсуждения после занятий — анализ ошибок, укрепление настойчивости.

Встречи с инженерами/преподавателями — профориентация, мотивация к обучению. *Методы воспитательного воздействия:*

- Личный пример педагога (демонстрация увлеченности техническим творчеством).
- Поощрение инициативы (баллы за креативные решения, сертификаты).
- Ситуации успеха (подбор задач по уровню сложности, чтобы каждый мог проявить себя).
- Метод проектов (длительная работа над идеей от замысла до реализации).
- **Игровые технологии** (ролевые игры, например, "Завод роботов" с распределением обязанностей).

План воспитательной работы: Приложение 3.

Учебный план

№ п/п	Наименование раздела	Количество часов			Формы аттестации (контроля)
		Теория	Практика	Всего	1
1	Вводное занятие. Техника безопасности. Основы работы с конструктором.	2	2	4	Устный опрос
2	Знакомство с Lego WeDo 2.0: смарт- хаб, мотор, программирование.		1	2	Тематический практикум
3	Работа с датчиками: наклона и движения.	1	1	2	Тематический практикум
4	Механические передачи движения (ременная, зубчатая, червячная, коронная, коническая, реечная, кулачковая).	7	7	14	Тематический практикум
5	Сборка и программирование моделей по схемам.	0	20	20	Тематический практикум
6	Задачи по программированию.	1	3	4	
7	Творческие проекты: создание собственных моделей.	0	12	12	Защита проекта
8	Групповые проекты: модели с несколькими моторами.	0	6	6	Презентация проекта
9	Промышленные устройства и их моделирование.	2	4	6	Тематический практикум
10	Промежуточная аттестация. Итоговое тестирование и выставка работ.	1	1	2	Тестирование, выставка
	Итого:	15	57	72	

Содержание учебного плана.

Раздел 1. Вводное занятие. Техника безопасности. Основы работы с конструктором

Теоретическая подготовка: Правила работы в компьютерном классе. Техника безопасности при работе с электроникой. Особенности конструктора Lego WeDo 2.0.

Практическая деятельность: Знакомство с комплектующими. Первые простые сборки

Раздел 2. Знакомство с Lego WeDo 2.0: смарт-хаб, мотор, программирование.

Теоретическая подготовка: Устройство смарт-хаба. Принципы работы мотора. Основы среды программирования.

Практическая деятельность: Создание движущейся модели и её программирование.

Раздел 3. Работа с датчиками: наклона и движения.

Теоретическая подготовка: Датчик наклона и датчик движения, их особенности.

Практическая деятельность: Создание модели с датчиком наклона и датчиком движения

Раздел 4. Механические передачи движения

Теоретическая подготовка: Механические передачи движения: ременная, зубчатая, червячная, коронная, коническая, реечная, кулачковая.

Практическая деятельность: Сборка моделей с разными типами передач.

Раздел 5. Сборка и программирование моделей по схемам.

Практическая деятельность: Сборка и программирование движущихся роботов по схемам (Вертолёт, автобус, поезд, карусель, робот-динозавр).

Раздел 6. Задачи по программированию.

Теоретическая подготовка: Основные алгоритмические конструкции: условные операторы и циклы.

Практическая деятельность: Решение задач по программированию.

Раздел 7. Творческие проекты: создание собственных моделей.

Практическая деятельность: Сборка и программирование собственных роботов.

Раздел 8. Групповые проекты: модели с несколькими моторами.

Практическая деятельность: Создание групповой модели с несколькими моторами.

Раздел 9. Промышленные устройства и их моделирование.

Теоретическая подготовка: Промышленная робототехника. Примеры реальных устройств.

Практическая деятельность: Создание робота по схеме.

Раздел 10. Промежуточная аттестация. Итоговое тестирование и выставка работ.

Теоретическая подготовка: Правила аттестации и итогового тестирования.

Практическая деятельность: Сборка робота. Презентация проекта.

Условия реализации программы

Язык реализации программы: русский.

Календарный учебный график (см. Приложение 1)

Формы аттестации (контроля)

Система оценки уровня освоения программы носит дифференцированный характер, учитывает, как работу на занятии, так и достижения ребенка.

Текущий контроль ведется в процессе занятий на протяжении всего учебного года с целью фиксации динамики изменений и развития способностей учащегося.

Формы контроля:

педагогическое наблюдение;

собеседование, опрос;

презентация проектов;

выполнение практических заданий педагога;

анализ качества выполнения учащимися работ;

анализ участия каждого учащегося в мероприятиях.

В течение учебного года проводятся открытые занятия, а также ведется фиксация достижений учащихся и результативность участия их в выставках и конкурсах.

По окончании обучения проводится *промежуточная аттестация*: учащиеся выполняют самостоятельную практическую работу, участвуют в тестировании и итоговой выставке работ.

Оценочные материалы представлены в приложении 2.

Методическое обеспечение

В основе образовательного процесса по реализации данной программы лежит технология разноуровневого обучения. При организации и осуществлении этого процесса приоритетным являются учебные преобразовательные задачи поискового характера. Процесс достижения цели и поставленных задач осуществляется в сотрудничестве педагога и детей, при этом применяются различные методы осуществления целостности педагогического процесса.

В зависимости от конкретных условий, возрастных особенностей, интересов учащихся, педагог может вносить в программу корректировки: сокращать количество часов по одной теме, увеличивать по другой, добавлять техники, применять новые материалы.

Формы организации деятельности учащихся на занятии:

- -индивидуальная (инструктаж, беседа, рассказ, обсуждение и др.);
- -парная (работа в парах и др.);
- -групповая (работа в группах и др.).

Формы проведения занятий:

-теоретическое занятие;

-практическое занятие и др.

Принципы организации деятельности учащихся:

- -принцип приоритета самостоятельной деятельности учащихся;
- -принцип приоритета практической деятельности учащихся;
- -принцип включения в деятельность мыслительных операций анализа, синтеза, сравнения, классификации, аналогии и обобщения;
 - -принцип продуктивного повторения.

Основными методами работы являются:

-методы словесной передачи и слухового восприятия информации (рассказ, объяснение, беседа и др.). Педагог посредством слова излагает, объясняет учебный материал, а учащиеся посредством слушания, запоминания и осмысливания активно его воспринимают и усваивают;

-методы наглядной передачи и зрительного восприятия учебной информации (иллюстрация, демонстрация, показ и др.): наглядный показ материала педагогом, либо учащимся под руководством педагога, а также демонстрация видеоматериалов;

-методы передачи учебной информации посредством практических действий. Практические методы применяются в тесном сочетании со словесными и наглядными методами обучения, так как практической работе по выполнению упражнения, опыта, учебно-исполнительской операции должно предшествовать инструктивное пояснение педагога. Словесные пояснения и показ иллюстраций обычно сопровождают и сам процесс выполнения упражнений, а также завершают анализ его результатов;

-репродуктивный метод (обучение по образцу). Репродуктивные упражнения особенно эффективно содействуют отработке практических умений и навыков, так как превращение умения в навык требует неоднократных действий по образцу;

-метод эмоционального восприятия. Подбор ассоциаций, образов, создание художественных впечатлений. Опора на собственный фонд эмоциональных переживаний каждого учащегося.

Для стимулирования учебно-познавательной деятельности применяются методы:

-соревнования, поощрение, личный пример.

Занятия включают теоретическую и практическую часть, проводятся в интерактивном режиме. Основная форма занятия – групповое комбинированное занятие (сочетание теории с практикой).

Материально-техническое обеспечение программы:

Для реализации образовательной программы используются:

- 1. кабинет для занятий;
- 2. столы и стулья;
- 3. шкафы для дидактических материалов, пособий;
- 4. специальная и научно-популярная литература для педагога и учащихся;
- 5. канцтовары;

Информационно-методическое обеспечение:

- 1. ноутбук (по количеству учащихся);
- 2. наборы LEGO WeDo 2.0 (по количеству учащихся);

- 3. мультимедийный проектор;
- 4. тематические видеоматериалы по программе;
- 5. оргтехника;
- 6. выход в сеть Internet.

Список литературы:

- 1. Автоматизированные устройства. ПервоРобот. Книга для учителя. LEGO Group, перевод ИНТ;
- 2. Бейктал Дж. Конструируем роботов от A до Я. Полное руководство для начинающих. М.: Лаборатория знаний, 2018;
- 3. Белиовская Л.Г., Белиовский Н.А. Использование LEGO-роботов в инженерных проектах школьников. Отраслевой подход: учеб. пособие. М.: ДМК Пресс, 2016;
- 4. Вильямс Д. Программируемый робот, управляемый с КПК. М.: НТ Пресс, 2018;
- 5. Гайсина С.В. Робототехника, 3D-моделирование, прототипирование: Реализация современных направлений в дополнительном образовании: метод. реком. для педагогов. СПб.: КАРО, 2017;
- 6. Давыдкин М.Н. Механотроника и робототехника LEGO. От идеи до проекта: метод. указания. М.: Изд. дом НИТУ «МИСиС», 2019;
- 7. Индустрия развлечений. ПервоРобот. Книга для учителя и сборник проектов. LEGO Group, перевод ИНТ;
- 8. Кмец П. Удивительный LEGO Technic: Автомобили, роботы и другие замечательные проекты! М.: Эксмо, 2019;
- 9. Комарова Л. Г. «Строим из LEGO» (моделирование логических отношений и объектов реального мира средствами конструктора LEGO). М.; «ЛИНКА ПРЕСС», 2001;
- 10. Корягин А. Образовательная робототехника LEGO WeDo. М.: ДМК- Пресс, 2018;
- 11. Кукушин В.С. Дидактика: Учебное пособие. М.: ИКЦ «МарТ», Ростов-н/Д: Издательский центр «МарТ», 2003;
- 12. Лифанова О.А. Конструируем роботов на LEGO Education WeDo 2.0. Рободинопарк М.: Лаборатория знаний, 2019;
- 13. Угринович Н. Информатика и информационные технологии. М.: БИНОМ. Лаборатория знаний, 2006;
- 14. Филиппов С.А. Уроки робототехники: учеб. пособие. М.: Лаборатория знаний, 2018.

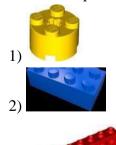
Календарный учебный график по дополнительной общеобразовательной общеразвивающей программе «РОБОтория» на 2024-2025 учебный год

1. Продолжительность учебного года по программе с 9 сентября 2024 года по 31 мая 2025 года

2.

Этапы образователы	ного процесса	1 год		
Продолжительность у	чебного года	36 недель		
Продолжительность у	чебной недели	6 дней согласно расписанию каждой		
		группы		
Количество учебных дней		36 дней		
Продолжительность	1 полугодие	09.09.2024-31.12.2024		
учебных периодов	2 полугодие	12.01.2025-31.05.2025		
Возраст детей		10-12 лет		
Продолжительность за	R ИТКНБ	1 час		
Режим занятий		2 раза в неделю		
Годовая учебная нагру	узка	72 часа		
Промежуточная аттест	гация	Апрель-май 2025 года		

Приложение 2


Оценочные материалы

Промежуточная аттестация учащихся

Форма проведения: тестирование, практическая работа.

Задание: выбрать один правильный ответ из предложенных. За каждый правильный ответ -1 балл. За неправильный ответ или отсутствие ответа -0 баллов. Максимальное количество -7 баллов.

1. Где изображена балка из набора LEGO Education WeDo? (обвести правильный ответ)

- 2. Как называется деталь из набора LEGO WeDo? (выбрать правильный ответ)
- 1) Датчик перемещения
- 2) Датчик движения
- 3) Датчик наклона

3. Какая передача изображена на рисунке? (выбрать правильный ответ)

- 1) Зубчатая
- 2) Ременная
- 3) Цепная
- 4. Где на схеме обозначен блок мощности мотора? (обвести правильный ответ)

5. Что означает этот блок палитры и для чего он нужен?

- 1) ждать до...
- 2) цикл отвечает за повторение блока программы
- 3) блок звук, отвечает за производство музыкальной дорожки
- 6. Какой датчик используется в модели «Самолет»?
- 1) Датчик расстояния
- 2) Датчик наклона
- 7. Какой датчик используется в модели «Голодный аллигатор»?
- 1) Датчик наклона
- 2) Датчик расстояния

Ключ ответов

№	Ответ
1.	4
2.	3
3.	1
4.	7
5.	2
6.	2
7.	2

Критерии по сумме баллов:

высокий уровень – от 6 баллов и более;

средний уровень – от 5 до 4 баллов;

низкий уровень – до 4 баллов.

Форма проведения: защита творческого проекта.

Ребята представляют творческие проекты, созданные по собственному замыслу. Критерии оценки:

- -качество исполнения (правильность сборки, прочность, завершенность конструкции) от 1 до 5 баллов;
 - -сложность конструкции (количество использованных деталей) от 0 до 5 баллов;
 - -работоспособность -0, 2 или 5 баллов:

программа написана самостоятельно и без ошибок -5 баллов;

программа написана, но с помощью педагога -2 балла; программа не написана -0 баллов;

-самостоятельность – 1 или 3 балла:

проект выполнен самостоятельно – 3 балла;

проект создан с помощью педагога –1 балл;

-ответы на дополнительные вопросы – от 0 до 3 баллов.

Максимальное количество баллов – 21 балл.

Критерии по сумме баллов:

высокий уровень – от 17 баллов и более;

средний уровень – от 11 до 16 баллов;

низкий уровень – до 10 баллов.

Приложение 3

План воспитательной работы

Месяц	Мероприятие	Формат	Цель
Сентябрь	«Как технологии меняют мир?»	Дискуссия с примерами	Познакомить с влиянием технологий на разные сферы жизни
	«Знакомство с миром	Беседа + презентация	Показать связь робототехники с
Октябрь	профессий будущего»		современными профессиями (инженер, программист, бионик).

Месяц	Мероприятие	Формат	Цель
Ноябрь	«Что такое толерантность?»	пренинг с играми	Развитие коммуникативных навыков, уважения к различиям
Декабрь	«Традиции Нового года в разных странах»	полешествие +	Познакомить с культурным разнообразием
Январь	«Профессии будущего»		Профориентация, расширение представлений о карьере
Февраль	«Что значит быть защитником?»		Формирование патриотизма, обсуждение современных форм защиты
Март	«Экопривычки: что могу сделать я?»	Практикум с кейсами	Воспитание экологического сознания
Апрель	«Гагарин и мы: что важно знать о космосе»	пинтепактивная пекния	Привить интерес к науке, отметить вклад России
Май	«Память поколений»	Чтение и обсуждение рассказов о войне	Сохранение исторической памяти

Приложение 4

Дидактические материалы

Словарь терминов

Кирпичики

ßx — xupr iuøA 1Æ naayp io-roztyóoA f¥8002674

2x — кирпичик, 2x2, лазурно-голубой. №4653970

лазурно-голубой. №6036238

2x — кирпичик, 2x4, лазурно-голубой. N24625629

4x - кирпичик для перекрытия, 1x2x2,

4х — круглый кирпичик, 2х2, прозрачный, светло-голубой. №4178398

ŻX - K+ĄflfîH 4H C 1 iuapœæz C0øANHet•IMG¥¢,, ZXZ. 7auHo•oapuß. ł 24497Z53

2x — закруглённый кирпичик, 1x3, ca/tatosufL N04M7928

4x — закруглённый кирпичик, 1x6, ca/tatosufL N9B30699

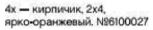
1х2/45°, салатовый. №4537925

4х — обратный кирпичик для перекрытия, 1х3/25°, салатовый. №6138622


2х — кирпичик для перекрытия, 1x2/45°, чёрный. N94121966

2x — закруглённый кирпичик, 1x6, ло-голубой. N960SZ4I8

4k - x pnł+кlH c CDaAFIM¥tTO/ 6hl»IH штифтом, 1x2, серый. №4211364



4х — обратный кирпичик для перекрытия, 1x2/45°, ярко-оранжевый. №6136455

ярко-оранжевый. №6131583

чёрный. №300326

4x — кирпичик с шарико-

2х2, прозрачный, светло-голубой.

2x — кирпичик с шипами с одной стороны, 1x1, белый. №4558952

0

ïx — xupnøwx c 2 u/apoauun CaæAøl+lØUæMM. ZX2, •+gpi•ibllži. Nãó09Z7Z2

Балки

2x — балка с гвоздиками, 1x12,

Оси

салатовая. №6132377

2x — балка с гвоздиками, 1x16,

салатовая. №6132379

Электронные компоненты

Назначение

6х — ступица/шкив, 18х14 мм, белый. №6092256

6х — ступица/шкив, 24х4 мм, прозрачный, светло-голубой. N26096296

2x — ремень, 24 мм, красный. №4544143

2x — ремень, 33 мм, желтый. N94544151

чёрное. №6028041

4х — шина, 30,4х14 мм, чёрное. №4619323

2х - шина, 37х18 мм, чёрное. N24506553

Зубчатые колеса

1x — червячное колесо, серое. №4211510

4x — зубчатое колесо, 8 зубъев, темно-серое. №6012451

1х — блок зубчатых колес, прозрачный. №4142824

2х — коническое зубчатое колесо, 20 зубъев, бежевое. №6031962

2x — зубчатое колесо, 24 зуба, темно-серое. №6133119

4х — зубчатая рейка, 10 зубьев, белая. №4250465

2х — двойное коническое зубчатое колесо, 12 зубъев, чёрное. №4177431

2х — двойное коническое зубчатое колесо, 20 зубьев, чёрное. №6093977

Соединительные элементы

4x — втулка/шкив, ½-модульные, желтый. №4239601

4x — втулка, 1-модульная, серая. №4211622

2x — втулка/удлинитель оси, 2-модульная, серая. №4512360

2x — угловой блок 1, 0°, белый. №4118981

2х — угловой блок 3, 157,5°, лазурно-голубой. №6133917

2x — угловой блок 4, 135°, салатовый. №6097773

4х — соединительный штифт без фрикционной муфты/оси, 1-модульный/1-модульный, бежевый. №4666579

2х — труба, 2-модульная, ярко-зелёная. №6097400

8х — соединительный штифт с фрикционной муфтой, 2-модульный, черный. №4121715

 4х — шар с поперечным отверстием, ярко-оранжевый. №6071608

1x — трос, 50 см, чёрный. №6123991

2х — цепь,16-модульная, темно-серая. №4516456

1x — бобина, темно-серая. №4239891

Пластины

2х — угловая пластина, 1х2/2х2, белая, №6117940

4х — пластина с отверстиями, 2х4, ярко-оранжевая. №6132408

2х — закруглённая пластина, 1х4х2/3, лазурно-голубая. №6097093

6x — пластина, 1x2, белая. №302301

4x — пластина с отверстиями, 2x6, ярко-оранжевая. №6132409

2х — круглая пластина, 4х4, лазурно-голубая. №6102828

4x — пластина, 1x4, белая. №371001

2x — пластина с отверстиями, 2x8, ярко-зеленая. №6138494

2х — рамная пластина, 4х4, серая. №4612621

4x — пластина, 1x6, белая. №366601

2x — пластина, 1x12, белая. №4514842

2x — пластина, 2x16, черная. №428226

2x — пластина, 4x6/4, салатовая. №6116514

1х — пластина с отверстием, 2х3, серая. №4211419

4x — круглая пластина, 1x1, чёрная. №614126

2x — плитка, 1x2, лазурно-голубая. №4649741

2х — круглая пластина, 2х2, ярко-зеленый. №6138624

2х — Круглая пластина с 1 шипом, 2х2, белая. №6093053

4x — плитка, 1x8, серая. №4211481

Другие компоненты

1x — листья, 2x2, ярко-зелёная. №4143562

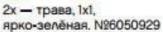
6x — основание, 2x2, чёрное. №4278359

2x — антенна, белая. №73737

1x — основание поворотной платформы, 4x4, черное. №4517986

1x — цветок, 2x2, красный. №6000020

2x — круглая плитка с глазом, 1x1, белая. №6029156


2x — круглая плитка с отверстием, 2x2, темно-серая. №6055313

2х - сноуборд,

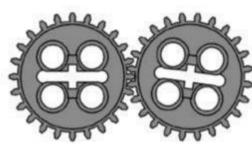
ярко-оранжевый. №6105957

2x — круглая плитка с глазом, 2x2, белая. №6060734

1x — отделитель элементов, оранжевый. №4654448

Зубчатое колесо	Колесо, по периметру которого расположены зубья. Зубья одного колеса входят в зацепление с зубьями другого колеса и передают ему движение. Их часто называют шестернями.
Зубчатое колесо	В таком колесе зубья располагаются на одной из его боковых
коронное	поверхностей, придавая колесу сходство с короной. Коронное зубчатое колесо, работая в паре с обычным зубчатым колесом, изменяет направление вращения на 90°.
Зубчатое колесо,	Это цилиндр, имеющий один зуб, выполненный в виде спирали
червячное	(наподобие винта). В паре с обычным зубчатым колесом используется для снижения скорости и повышения передаваемого усилия.

Ремень	Замкнутая лента, надетая на два шкива, чтобы один из них мог вращать другой.
Шкив	Колесо с канавкой (канавками) на ободе. На шкивы надевают ремни, цепи или тросы.
Зубчатая рейка	Деталь, с одной стороны которой расположены зубья. Служит для преобразования вращательного движения в поступательное и, наоборот.
Кулачок	Колесо некруглой, неправильной формы, используемое для преобразования вращательного движения кулачка в возвратно-поступательное движение толкателя.
Балка	Деталь с крепежными отверстиями или выступами, являющая основным несущим элементом большинства моделей.
Штифт	Соединительный элемент, позволяющий скреплять детали между собой. Устанавливается в смежные отверстия деталей
Ось	Деталь, передающая вращение от мотора к исполнительному механизму (например, колесу).
Муфта	Деталь, позволяющая соединить две оси между собой.
Колесо	Деталь круглой формы, вращающаяся на оси, обеспечивая поступательное движение. Состоит из ступицы и шины.
Ступица	Средняя часть колеса, в центральной части которой имеется отверстие для закрепления колеса на оси вращения.
Плечо силы	Часть рычага от точки опоры до точки приложения силы.
Втулка	Деталь, имеющая осевое отверстие для фиксации оси относительно других деталей.
Рычаг	Балка, которая при приложении силы, проворачивается относительно точки опоры.
Скорость линейная	Расстояние, которое преодолевает объект за определенный промежуток времени.
Скорость вращения	Количество оборотов, совершаемых объектом за определенный промежуток времени.


Механические передачи на LegoWeDo 2.0

Одна ИЗ самых примечательных ячеек образовательного набора LegoWeDo 2.0 содержит детали, которые были заимствованы из серии конструкторов LegoTechnic: цилиндрические, двойные конические конические зубчатые колеса, зубчатые рейки, червячное колесо (вовсе не колесо по своей

сути!) и кейс для червячного редуктора. Все это многообразие деталей позволяет создавать модели с механическими передачами.

Цилиндрическая передача Lego WeDo 2.0

В наборе есть два зубчатых колеса (шестеренки) на 24 зубья, а также 4 шестеренки на 8 зубьев. Все шестеренки имеют серый цвет. Особенность цилиндрических шестеренок заключается в том, что они могут передавать вращение в одной плоскости, то есть оси вращения, на которых

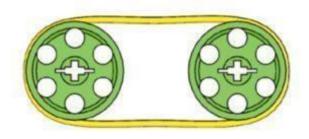
установлены шестеренки должны быть параллельны. В возрасте 7-8 лет ребята знакомятся с одноступенчатыми цилиндрическими передачами, а затем осваивают и принцип построения многоступенчатых (каскадных) редукторов.

Коническая передача Lego WeDo 2.0

Конические зубчатые колеса представлены в наборе в следующем составе: две конические шестерни на 20 зубьев (бежевого цвета), двойное коническое колесо на 12 зубьев — 2 шт. и на 20 зубьев — 2 шт. Последние четыре конические колеса имеют черный цвет. Итого шесть конических шестеренок! Особенность конической передачи заключается в том, что вращение может передаваться в разных плоскостях, то есть оси вращения, на которых установлены шестеренки могут пересекаться под различными углами. Самый популярный вариант — это взаимно перпендикулярное расположение осей, т.е. угол между ними равняется 90°.

Червячная передача Lego WeDo 2.0

Одна из самых любимых передач у ребят в нашей секции – это червячная. Во-первых, название у передачи более чем запоминающееся, а во-вторых, разработчики


конструктора предусмотрели специальный кейс для червячного редуктора — поэтому сложностей по сборке такой передачи не возникает. В то же время в конструкторе LegoMindstorms EV3 специального кейса не предусмотрено и ребятам приходится собирать червячный редуктор «с нуля». Помимо специального кейса в наборе есть и основой элемент —

«червяк», деталь напоминающая всем своим видом Архимедов винт. В зацепление с червяком оказывается цилиндрическая шестеренка (24 зубья). Таким образом, сам по себе червячный редуктор является зубчато-винтовым механизмом, оси валов при этом скрещиваются под углом 90°. Важная особенность червячной передачи — однонаправленность действия — мы можем передавать вращение от червяка к зубчатому колесу, и не можем наоборот, поскольку в этом случае зубья шестеренки стопорятся о витки неподвижного червяка.

Реечная передача Lego WeDo 2.0

Последние детали в нашей ячейке — это зубчатые рейки, в количестве 4 штук. Передача также очень популярна у детей — единственная передача в наборе, которая преобразовывает вращательный тип движения в поступательный. В зацепление с зубчатыми рейками может оказаться любая из имеющихся шестеренок, как цилиндрическая, так и коническая. Преобразование движения из вращательного в поступательное обратимо, в зависимости от того какой элемент — рейка или шестеренка закреплены конструктивно.

Ременная передача Lego WeDo 2.0

Ещè одна механическая передача, которую можно встретить в наборе — ременная. Однако ее элементы располагаются уже в соседней ячейке — два желтых ремня 33мм и два красных ремня 24мм. Здесь же

располагаются колèса, которые при отсутствии шин на них, играют роль шкивов ременной передачи. В качестве шкивов могут выступать и жèлтые втулки, поскольку также имеют специальную форму торца с вырезом. Принцип действия ременной передачи интуитивно понятен всем — ближайший аналог по принципу действия — цепную передачу, все видели в действии на своих велосипедах. Однако не всè так просто — желание передать вращение на большое расстояние приводит к тому, что ремни не выдерживают натяжения и рвутся. Поэтому заранее предупредите детей быть внимательнее!